

Ric Wheeler
Architect and Manager, Red Hat
May 5, 2011

ONE BILLION FILES:
Pushing Scalability Limits of Linux

File Systems

Overview

● Why Worry about 1 Billion Files?

● Storage Building Blocks

● Things File Systems Do & Performance

● File System Design Challenges & Futures

Why Worry about 1 Billion?

● 1 million files is so 1990

● 1 billion file support is
needed to fill up modern
storage!

How Many Files are Needed to Fill a File System?

FS Size 10KB Files 100KB Files 4MB Files
2TB Disk
Count

1 TB 100,000,000 10,000,000 250,000 1

10 TB 1,000,000,000 100,000,000 2,500,000 5

100 TB 10,000,000,000 1,000,000,000 25,000,000 50

4,000 TB 400,000,000,000 40,000,000,000 1,000,000,000 2,000

Why Not Use a Database?

● Users and system administrators are familiar with file
systems

● Backup, creation, etc are all well understood
● File systems handle partial failures pretty well

● Being able to recover part of the stored data is useful
for some applications

● File systems are “cheap” since they come with your
operating system!

Why Not Use Lots of Little File Systems?

● Moves the problem from the file system designers off
to application developers and users!

● Application developers then need to code multi-file
system aware applications

● Users need to manually distribute files to various file
systems

● Space allocation done statically

● Harder to optimize disk seeks
● Bad to write to multiple file systems at once on the

same physical device

Overview

● Why Worry About 1 Billion Files?

● Storage Building Blocks

● Things File Systems Do & Performance

● File System Design Challenges & Futures

Traditional Spinning Disk

● Spinning platters store data
● Modern drives have a large, volatile write cache
● Streaming read/write performance roughly 100MB/sec
● Seek latency limits drive to about 50-100 random IOPs

● This is the classic disk that file systems design for

● S-ATA 2TB drives go for under $200

External Disk Arrays

● External disk arrays can be very sophisticated
● Large non-volatile cache used to store data
● IO from a host normally lands in this cache

● Performance changes
● Streaming reads and writes are vastly improved
● Random writes and reads are fast when they hit cache
● Random reads can be very slow when they miss cache

● Arrays usually start in the $20K range

SSD Devices

● S-ATA interface SSD's
● Streaming reads & writes are reasonable
● Random writes are normally slow
● Random reads are great!
● 1TB of S-ATA SSD is roughly $1k

● PCI-e interface SSD's enhance performance across
the board

● Provides array like bandwidth & low latency random IO
● 320GB card for around $15k

How Expensive is 100TB?

● Build it yourself
● 4 SAS/S-ATA expansion shelves which hold 16 drives

($12k)
● 64 drives 2TB enterprise class drives ($19k)
● A bit over $30k in total

● Buy any mid-sized array from a real storage vendor

● Most of us will have S-ATA JBODS or arrays
● SSD's still too expensive

Overview

● Why Worry About 1 Billion Files?

● Storage Building Blocks

● Things File Systems Do & Performance

● File System Design Challenges & Futures

Common Wisdom on the Web

“Millions of files may work; but 1 billion is an utter
absurdity. A file system that can store
reasonably 1 billion small files in 7TB is an
unsolved research issue...,”

 Post on the ext3 mailing list, 9/14/2009

.

File System Life Cycle

● Creation of a file system (mkfs)

● Filling the file system

● Iteration over the files

● Repairing the file system (fsck)

● Removing files

Starting Small – Just 1 Million Files

● Avoid the obvious bottlenecks
● Spread files over 100 directories
● Filled with “fs_mark” command

● Tested on a desktop class machine running Fedora 15
● Intel(R) Core(TM)2 Quad CPU Q6600, 2.40GHz
● 4GB DRAM
● 1.5 TB S-ATA Seagate Disk (7200 RPM, 32 MB Cache)
● 2.6.38.3-18 F15 kernel

● Expect billion file times to be 1,000 times longer!

Making a File System
 Elapsed Time (Minutes)

S-ATA Disk - 1.4 TB FS
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

EXT4
XFS
BTRFS

Creating 1M Files
Elapsed Time (Minutes)

Empty Files - S-ATA Disk - 1.4TB FS 50KB Files - S-ATA Disk - 1.4 TB FS
0

50

100

150

200

250

EXT4
XFS
BTRFS

File System Repair
Elapsed Time (Minutes)

S-ATA Disk - FSCK 1 Million Files
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

EXT4
XFS
BTRFS

File System Iteration
Elapsed Time (Minutes)

Empty Files - S-ATA 50KB Files - S-ATA
0

0.5

1

1.5

2

2.5

3

3.5

EXT4
XFS
BTRFS

File System Deletion
Elapsed Time (Minutes)

1 Million Empty Files - S-ATA 1 Million 50KB Files - S-ATA
0

10

20

30

40

50

60

70

EXT4
XFS
BTRFS

We Need to Do Better!

● Aiming for 1 billion files

● These performance challenges are in RHEL6.1
● EXT4 is very slow at file system creation (mkfs)

● Over 50 minutes to mkfs

● XFS is slow at file creation and removal
● 150 days to hit 1 billion 50KB files

● BTRFS needs btrfsck to be finished
● Red Hat's Dave Chinner and Lukas Czerner tackled

the XFS and EXT4 issues respectively

EXT4 MKFS Improvements
 Elapsed Time (Minutes)

S-ATA Disk - 1.4 TB FS
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

EXT4 RHEL6.1
XFS RHEL6.1
EXT4 F15
BTRFS RHEL6.1

XFS Creating Files Improvements
Elapsed Time (Minutes)

Empty Files - S-ATA Disk - 1.4TB FS 50KB Files - S-ATA Disk - 1.4 TB FS
0

50

100

150

200

250

EXT4
XFS - RHEL6.1
XFS - F15
BTRFS

File Deletion Improvements
Elapsed Time (Minutes)

1 Million Empty Files - S-ATA 1 Million 50KB Files - S-ATA
0

10

20

30

40

50

60

70

EXT4
XFS - RHEL6.1
XFS - F15
BTRFS

Summary of Upstream Performance Gains

● XFS file creation & deletion
● Delayed logging mode (-o delaylog)
● 12-17x faster for file creation
● 21-24x faster for file deletion

● EXT4 File System Creation
● Lazy inode initialization feature
● 38x faster

● Path to RHEL: Upstream first, Fedora then RHEL...
● RHEL6.2 is the target for the above features

Billion File Testing - What Rate is the Goal?

● Rate of file creation can slow as file system ages
● Some types of storage slow down when fully utilized

● FSCK must finish in a reasonable time – 4 hours?

Goal Rate Needed

24 Hours 11,500 Files/sec

1 Hour 277,777 Files/sec

1 Minute 16,666,666 Files/sec

Hardware Impact on FS Zero Length File Creation
Files/sec (Bigger is better)

File System S-ATA S-ATA SSD

XFS 5,599 10,442

EXT4 5,857 19,602

BTRFS 18,229 19,501

Billion File Testing Hardware Upgrade

● Enterprise storage settings (nobarrier mount option)

● Desktop class test as a baseline on RHEL6.1
● 2 CPU, 2GB DRAM KVM guest
● Single Near-line SAS drive with RAID card

● Server class hardware test with RHEL6.1 & Upstream
● RHEL6.1 alpha kernel (2.6.32-122) vs 2.6.39-rc4
● 16TB FS

● 12 Near-line SAS drives & battery backed RAID card
● 8 CPU, 8GB DRAM KVM guest

Desktop RHEL6.1 Billion Empty File
Elapsed Time (Hours)

Creation Iteration FSCK/Repair Deletion
0

20

40

60

80

100

120

140

160

180

EXT4
BTRFS
XFS

Server RHEL6.1 Billion Empty Files
Elapsed Time (Hours)

MKFS - 16TB FS Creation - 16TB FS Iteration - 16TB FSCK/Repair - 16TB Deletion - 16TB FS
0

5

10

15

20

25

30

EXT4
XFS

Server 2.6.39-rc4 Billion Empty Files
Elapsed Time (Hours)

MKFS - 16TB FS Creation - 16TB FS Iteration - 16TB Deletion - 16TB FS
0

2

4

6

8

10

12

14

16

18

EXT4
XFS
BTRFS

Overview

● Why Worry About 1 Billion Files?

● Storage Building Blocks

● Things File Systems Do & Performance

● File System Design Challenges & Futures

Pick Your Hardware Carefully!

● Big storage requires really big servers
● xfs_repair can run in limited memory but runs faster with

more DRAM
● DRAM is relatively cheap so avoid paging!

● Faster storage building blocks can be hugely helpful
● Small file work loads are very IO/sec limited
● Using high performance, low latency storage helps
● Highest performance storage is still small capacity

Kernel Challenges

● “ls” is a really bad idea
● Iteration over that many files can be very IO intensive
● Applications use readdir() & stat()
● Supporting d_type avoids the stat call but is not

universally done
● Lock scalability

● With faster storage hardware, lock contention has
become an issue for FS & IO stack

● Block caching schemes mix of expensive SSD and
high capacity, cheap disks

Things to Keep in Mind

● One Billion Files is really still quite challenging
● Expect to wait for hours (if not days!)

● Remote replication & backup are painful at this scale
● Iteration & read rates hurt by concurrent IO
● Done on a live system - cgroups can definitely help

● Things that last this long will experience failures
● Checkpoint/restart support
● Robust IO error handling needed

Questions?

Ric Wheeler
rwheeler@redhat.com

Resources

● Red Hat videos (search for “ext4” or “XFS”)
● https://access.redhat.com/knowledge/videos

● Mailing lists include
● linux-ext4@vger.kernel.org, xfs@oss.sgi.com,

inux-btrfs@vger.kernel.org

● Linux kernel coverage: http://lwn.net

mailto:linux-ext4@vger.kernel.org
mailto:xfs@oss.sgi.com
mailto:inux-btrfs@vger.kernel.org
http://lwn.net/

Summit File System Talks

● Wed. 5:30pm: File System Performance – John Shakshober

● Wed. 2:00PM: NFS – The Next Generation – Steve Dickson

● Thurs. 3:10 - Tuning the Red Hat Enterprise Linux 6 I/O
Subsystem & Using I/O cGroups – Jeff Moyer and Vivek Goyal

● Wed. 4:20PM - Building a Cloud Filesystem – Jeff Darcy and
Mark Wagner

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

